

Systematic review and meta-analysis of association between oral contraceptives and cardiovascular disease (CVD) in premenopausal women Oyesanmi A. Fabunmi^{1,2}, Phiwayinkosi V. Dludla³, Bongani B. Nkambule¹

¹School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa. ²Department of Physiology, Ekiti State University, Ado-Ekiti, Nigeria.

³Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.

Introduction

- Cardiovascular diseases (CVDs) are the leading cause of death worldwide, with low- and middle-income nations accounting for over three-quarters of CVD deaths ¹.
- Meanwhile, the use of oral contraceptive is associated with an increased risk of cardiovascular events in women
- There were 3245 participants of which 1605 (49.5%) were oral contraceptive users while 1640 (50.5%) were non-users.
- The pooled estimate in our forest plot (figure 2) showed little to no difference in endothelia activation among oral contraceptive users when compared with non-users (SMD = -0.11, 95% CI (-0.81, 0.60) (*P*= 94%, Z = 0.30, p = 0.76).
- However, pooled estimates of other traditional cardiovascular risk variables showed a significant increased (SMD = 0.73, 95% CI (0.46, 0.99) (*P* = 94%, Z = 5.41, p < 0.001).

of reproductive age ².

Aim

- To provide a comprehensive synthesis of the available evidence on the link between oral contraceptive use and CVD-risk in premenopausal women.
- To assess the role of geographic disparities.

Methodology

- This systematic review and meta-analysis was prepared according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines.
- Participants: Healthy premenopausal women
- Intervention: Oral contraceptive
- Comparator: Premenopausal women not using oral contraceptives
 Outcome: Endothelia activation and cardiovascular risk variables.

More so in terms of geographic disparities, Europe had the least effect size (SMD = 0.03, 95% CI (-0.21, 0.27), (*I*² = 0%, Z = 0.25 p = 0.88), while North America had the highest effect size (SMD = 1.86, 95% CI (-0.31, 4.04), (*I*² = 98%, Z = 1.68 p = 0.09) for CVD-risks in OC users when compared with non-users.

	OC users			Non users			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
4.1.1 Nitric Oxide (NO)									
Fallah 2012	14.7	4.5	50	28.3	6.5	50	11.3%	-2.41 [-2.93, -1.89]	-
Merki-Feld 2002	57.8	27.3	12	61	22.9	12	10.5%	-0.12 [-0.92, 0.68]	
Zahra 2019	195.5	88.4	23	162.7	90.9	50	11.3%	0.36 [-0.14, 0.86]	
Subtotal (95% CI)			85			112	33.1%	-0.73 [-2.60, 1.14]	
Heterogeneity: Tau² = 2.63; Chi² = 60.66, df = 2 (P < 0.00001); I² = 97%									
Test for overall effect: .	Z = 0.77	(P=C)	1.44)						
4.4.2 EMD									
4.1.2 FMD									
Franceschini 2013	10.1	4.2	16	7.4	2.1	21	10.8%	0.83 [0.15, 1.51]	
Heidarzadeh 2014	11	3.53	30	15.8	9.22	30	11.3%	-0.68 [-1.20, -0.16]	
Lizarelli 2009	6.45	2.21	25	8.74	3.43	50	11.3%	-0.74 [-1.23, -0.24]	
Subtotal (95% CI)			71			101	33.5%	-0.22 [-1.12, 0.68]	\bullet
Heterogeneity: Tau² = 0.55; Chi² = 15.42, df = 2 (P = 0.0004); l² = 87%									
Test for overall effect: .	Z = 0.49	(P=C)	1.63)						

- The potential risk of bias of all included studies were assessed using the modified Downs and Black checklist.
- Data analysis were performed using the Review Manager (RevMan).

Results

- Briefly, 179 studies were screened after searching from inception till date.
- 25 were included in the review, while 15 studies were included in the meta-analysis.

Figure 2: Forest plot of vascular and cellular markers of endothelia activation in premenopausal women on oral contraceptive versus nonusers. Abbreviations; FMD (flow mediated dilation), CCA-IMT (Common Carotid Artery Intima–Media thickness).

Conclusion

- Evidence from this systematic review and meta-analysis showed little to no difference in the risk of endothelia dysfunction among oral contraceptive users when compared with non-users.
- There was a significant increase in the prevalence of other

Figure 1: Prisma flow chart represents study selection

traditional cardiovascular risk variables. Lastly, the magnitude of CVD-risks varies across different geographical region.

Acknowledgement

The authors appreciate the financial and technical support of all the affiliated institutions.

References

 Centers for Disease Control and Prevention. Data and statistics on venous thromboembolism. Centers Dis. Control Prev.2020.
 Shufelt CL, Bairey Merz CN. Contraceptive Hormone Use and Cardiovascular Disease. *J Am Coll Cardiol* 2009;**53**:221–31. doi:10.1016/j.jacc.2008.09.042.